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Abstract:- Many seemingly different problems in artificial intelligence, 
symbolic processing, and machine learning can be viewed as requiring 
discovery of a computer program that produces some desired output for 
particular inputs. When viewed in this way, the process of solving these 
problems becomes equivalent to searching a space of possible computer 
programs for a most fit individual computer program. The new “genetic 
programming” paradigm described herein provides a way to search for 
this most fit individual computer program. In this new “genetic 
programming” paradigm, populations of computer programs are 
genetically bred using the Darwinian principle of survival of the fittest 
and using a genetic crossover (recombination) operator appropriate for 
genetically mating computer programs. In this paper, the process of 
formulating and solving problems using this new paradigm is illustrated 
using examples from various areas. 
Examples come from the areas of machine learning of a function; 
planning; sequence induction; symbolic function identification 
(including symbolic regression, empirical discovery, "data to function" 
symbolic integration, "data to function" symbolic differentiation); 
solving equations, including differential equations, integral equations, 
and functional equations); concept formation; automatic programming; 
pattern recognition, time-optimal control; playing differential 
pursuerevader games; neural network design; and finding a game-
playing strategy for a discrete game in extensive form. 
The purpose of this paper is to show how to reformulate these seemingly 
different problems into a common form (i.e. a problem requiring 
discovery of a computer program) and, then, to describe a single, unified 
approach for solving problems formulated in this common form. 
                                                                                                                                               

1.INTRODUCTION: 
Genetic programming is a technique pioneered by John Koza 
which enables computers to solve problems without being 
explicitly programmed. It works by using John Holland's 
genetic algorithms to automatically generate computer 
programs. Genetic algorithms were devised by Holland as a 
way of harnessing the power of natural evolution for use 
within computers. Natural evolution has seen the 
development of complex organisms (e.g. plants and animals) 
from simpler single celled life forms. Holland's GAs are 
simple models of the essentials of natural evolution and 
inheritance. 
The growth of plants and animals from seeds or eggs is 
primarily controlled by the genes they inherited from their 
parents. The genes are stored on one or more strands of DNA. 
In asexual reproduction the DNA is a copy of the parent's 
DNA, possibly with some random changes, known as 
mutations. In sexual reproduction, DNA from both parents is 
inherited by the new individual. Often about half of each 
parent's DNA is copied to the child where it joins with DNA 
copied from the other parent. The child's DNA is usually 
di_erent from that in either parent. 
Natural Evolution arises as only the fittest individuals survive 
to reproduce and so pass on their DNA to subsequent 
generations. That is DNA which produces fitter individuals is 

likely to increase in proportion in the population. As the 
DNA within the population changes, the species as a whole 
changes, i.e. it evolves as a result of selective survival of the 
individuals of which it is composed. 
Genetic algorithms contain a population of trial solutions to a 
problem, typically each individual in the population is 
modeled by a string representing its DNA. This population is 
“evolved” by repeatedly selecting the “fitter” solutions and 
producing new solution from them. The new solutions 
replacing existing solutions in the population. New 
individuals are created either asexually (i.e. copying the 
string) or sexually (i.e. creating a new string from parts of 
two parent strings).In genetic programming the individuals in 
the population are computer programs. To ease the process of 
creating new programs from two parent programs, the 
programs are written as trees. New programs are produced by 
removing branches from one tree and inserting them into 
another. This simple process ensures that the new program is 
also a tree and so is also syntactically valid. 
As an example, suppose we wish a genetic program to 
calculate y = x2. Our population of programs might contain a 
program which calculates y = 2x�x (see _gure 1) and another 
which calculates y = xx x�x3 �x (_gure 2). Both are selected 
from the population because they produce answers similar to 
y = x2 (_gure 4), i.e. they are of high _tness. When a selected 
branch (shown shaded) is moved from the father program and 
inserted in the mother (displacing the existing branch, also 
shown shaded) a new program is produced which may have 
even high _tness. In this case the resulting program (_gure 3) 
actually calculates y = x2 and so this program is the output of 
our GP. The remainder of this paper describes genetic 
algorithms in more detail, placing them in the context of 
search techniques, then explains genetic programming, its 
history, the _ve steps to GP, shows these steps being used in 
our example and gives a taxonomy of current GP research 
and applications. Current GP research and applications are 
presented in some detail. 

 
2.BACKGROUND ON GENETIC ALGORITHMS: 

Observing that sexual reproduction in conjunction with 
Darwinian natural selection based on reproduction and 
survival of the fittest enables biological species to robustly 
adapt to their environment, Professor John Holland of the 
University of Michigan presented the pioneering 
mathematical formulation of simulated evolution(“genetic 
algorithms”) for fixed-length (typically binary) character 
strings in Adaptation in Natural and Artificial Systems 
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(Holland 1975). In this work, Holland demonstrated that a 
wide variety of different problems in adaptive systems are 
susceptible to reformulation in genetic terms so that they can 
potentially be solved by a highly parallel mathematical 
“genetic algorithm” that simulates Darwinian evolutionary 
processes and naturally occurring genetic operations on 
chromosomes. 
Genetic algorithms superficially seem to process only the 
particular individual binary character strings actually present 
in the current population. However, Holland’s 1975 work 
focused attention on the fact that they actually also implicitly 
process, in parallel, large amounts of useful information 
concerning unseen Boolean hyperplanes (called schemata) 
representing numerous additional similar individuals not 
actually present in the current population. Thus, genetic 
algorithms have a property of "intrinsic parallelism" which 
enable them to create individual strings for the new 
population in such a way that the hyperplanes representing 
these unseen similar other individuals are all automatically 
expected to be represented in proportion to the fitness of the 
hyperplane relative to the average population fitness. 
Moreover, this additional computation is accomplished 
without any explicit computation or memory beyond the 
population itself. As Schaffer (1987) points out, "Since there 
are very many more than N hyperplanes represented in a 
population of N strings, this constitutes the only known 
example of the combinatorial explosion working to advantage 
instead of disadvantage." 
In addition, Holland established that the seemingly 
unprepossessing genetic operation of crossover in 
conjunction with the straight forward operation of fitness 
proportionate reproduction causes the unseen hyperplanes 
(schemata) to grow (and decay) from generation to generation 
at rates that are mathematically near optimal. In particular, 
Holland established that the genetic algorithm is a 
mathematically near optimal approach to adaptation in the 
sense that it maximizes overall expected payoff when the 
adaptive process is viewed as a set of multi-armed slot 
machine problems for allocating future trials in the search 
space given currently available information. Holland’s l975 
work also highlighted the relative unimportance of mutation 
in the evolutionaryprocess. In this regard, it contrasts sharply 
with numerous other efforts to solve adaptive systems 
problem by merely Òsaving and mutating the bestÓ, such as 
the 1966 Artificial Intelligence through Simulated Evolution 
(Fogel et. al.) and other work using only asexual mutation . 
The introduction of the classifier system (Holland 1986, 
Holland et. al. 1986, Holland and Burks 1987, Holland and 
Burks 1989) continued the trend towards increasing the 
complexity of the structures undergoing adaptation. A 
classifier system is a cognitive architecture into which the 
genetic algorithm has been embedded so as to allow adaptive 
modification of a population of string-based if-then rules 
(whose condition and action parts are fixed length binary 
strings). The classifier system architecture blends the 
desirable features of if-then rules from expert systems, a more 
precisely targeted allocation of credit to specific rules for 

performance, and the creative power of the genetic algorithm. 
In addition, embedding the genetic algorithm into the 
classifier system architecture creates a computationally 
complete system which can, for example, realize functions 
such as the exclusive-or function. The exclusive-or function 
was not realizable by early single layer linear perceptrons 
(Minsky and Papert 1969) and, because the exclusive-or 
function yields totally uninformative schemata (similarity 
templates), it was not realizable with conventional linear 
genetic algorithms using fixed length binary strings. 
 

3.THE “GENETIC PROGRAMMING” PARADIGM: 
In this section we describe the “genetic programming” 
paradigm using hierarchical genetic algorithms by specifying 
(1) the nature of the structures that undergo adaptation in this 
paradigm, (2) the search space of structures, (3) the initial 
structures, (4) the environment and fitness function which 
evaluates the structures in their interaction with the 
environment, (5) the operations that are performed to modify 
the structures, (6) the state (memory) of the algorithmic 
system at each point in time, (7) the method for terminating 
the algorithm and identifying its output, and (8) the 
parameters that control the process. 
3.1. THE STRUCTURES UNDERGOING ADAPTATION 
The structures that undergo adaptation in the genetic 
programming paradigm are hierarchically structured 
computer programs whose size, shape, and complexity can 
dynamically change during the process. This is in contrast to 
the one-dimensional linear strings (whether of fixed or 
variable length) of characters (or other objects) cited 
previously . 
The set of possible structures that undergo adaptation in the 
genetic programming paradigm is the set of all possible 
composition of functions that can be composed recursively 
from the available set of n functions F = {f1, f2, ... , fn} and 
the available set of m terminals T = {a1, a2, ... , am}. Each 
particular function f in F takes a specified number z(f) of 
arguments b1, b2, ..., bz(f). Depending on the particular 
problem of interest, the functions may be standard arithmetic 
operations (such as addition, subtraction, multiplication, and 
division), standard mathematical functions(such as SIN, EXP, 
etc.), Boolean operations, domain-specific functions, logical 
operators such as If-Then-Else, and iterative operators such 
as Do-Until, etc. We assume that each function in the 
function set of well-defined for any value in the range of any 
of the functions. The "terminals" may be variable atomic 
arguments, such as the state variables of a system; constant 
atomic arguments, such as 0 and 1; and, in some cases, may 
be other atomic entities such as functions with no arguments 
(either because the argument is implicit or because the real 
functionality of the function is the side effect of the function 
on the state of the system). 
Virtually any programming language is capable of expressing 
and evaluating the compositions of functions described above 
(e.g. PASCAL, FORTRAN, C, FORTH, LISP, etc.). We have 
chosen the LISP programming language (first developed by 
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John McCarthy in the 1950Õs) for the work described in this 
article for the following six reasons. 
First, both programs and data have the same form in LISP. 
This means that it is possible to genetically manipulate a 
computer program and then immediately execute it (using the 
EVAL function of LISP). 
Second, the above-mentioned common form for both 
programs and data in LISP is equivalent to the parse tree for 
the computer program. In spite of their outwardly different 
appearance and syntax, most "compiled" programming 
languages convert, at the time of compilation, a given 
program into a parse tree representing its underlying 
composition of functions. In most programming languages, 
this parse tree is not accessible to the programmer. As will be 
seen, we need access to the parse tree because we want to 
genetically manipulate the sub-parts of given computer 
programs (i.e. sub-trees of the parse tree). LISP gives us 
convenient access to this parse tree. 
Third, LISP facilitates the programming of structures whose 
size and shape changes dynamically 
(rather than predetermined in advance). Moreover, LISP’s 
dynamic storage allocation and garbage collection provides 
administrative support for programming of dynamically 
changing structures. 
Fourth, LISP facilitates the handling of hierarchical 
structures. 
Fifth, the LISP programming language is reentrant. 
Sixth, software environments with a rich collection of tools 
are commercially available for the LISP programming 
language.For these reasons, we have chosen the LISP 
programming language for the work described in this paper. 
In particular, we have chosen the Common LISP dialect of 
LISP (Steele 1984). That is, the structures that undergo 
adaptation in the genetic programming paradigm are LISP 
computer programs (i.e. LISP symbolic expressions). 
It is important to note that we did not choose the LISP 
programming language for the work described in this article 
because we intended to make any use of the list data structure 
or the list manipulation functions unique or peculiar to the 
LISP programming language. The general nature of the LISP 
programming language can be illustrated by a simple 
example. For example, (+ 1 2) is a LISP symbolic expression 
(S-expression) that evaluates to 3. In this Sexpression, the 
addition function (+) appears just inside the left-most 
parenthesis of the Sexpression. This "prefix" form (e.g. Polish 
notation) represents the application of a function (+) to its 
arguments (1 and 2) and is a convenient way to express a 
composition of functions. Thus, the S-expression (+ 1 (* 2 3)) 
is a composition of two functions (+ and *) that evaluates to 
7. Similarly, the S-expression (+ 1 2 (IF (> TIME 10) 3 4)) 
demonstrates the “function” being applied to the variable 
atom TIME and the constant atom 10. The sub-expression (> 
TIME 10) evaluates to either T (True) or NIL (False) and this 
value becomes the first argument of the ÒfunctionÓ IF. The 
function IF returns either its second argument (i.e. the 
constant atom 3) if its first argument is T and it returns its 
third argument (i.e. the constant atom 4) if its first argument 

is NIL. Thus, this S-expression evaluates to either 6 or 7 
depending on the current value of TIME. 
Now consider the Boolean exclusive-or function which can 
be expressed in disjunctive normal form and represented as 
the following LISP S-expression: 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). The set of 
functions here is F = {AND, OR, NOT} and the set of 
terminals is T = {D0, D1}. For our purposes here, terminals 
can be viewed as functions requiring zero arguments in order 
to be evaluated. Thus, we can combine the set of functions 
and terminals into a combined set C = F È T = {AND, OR, 
NOT, D0, D1} taking 2, 2, 1, 0, and 0 arguments, 
respectively. 
Any LISP S-expression can be graphically depicted as a 
rooted point-labeled tree with ordered branches. The tree 
corresponding to the LISP S-expression above for the 
exclusive-or function is shown below: 
 

 
 
In this graphical depiction, the 5 internal points of the tree are 
labeled with functions (e.g. OR,AND, NOT, NOT, and 
AND); the 4 external points (leaves) of the tree are labeled 
with terminals (e.g. the variable atoms D0, D1, D0, and D1); 
and the root of the tree is labeled with the function (i.e. OR) 
appearing just inside the outermost left parenthesis of the 
LISP S-expression. This tree is equivalent to the parse tree 
which most compilers construct internally to represent a 
given computer program.Note that the set of functions and 
terminals being used in a particular problem should be 
selected so 10 as to be capable of solving the problem (i.e. 
some composition of the available functions and terminals 
should yield a solution). Removing the function NOT from 
the function set F above would, for example, create an 
insufficient function set for expressing the Boolean 
exclusive-or function. 
3.2 .   THE INITIAL STRUCTURES 
Generation of the initial random population begins by 
selecting one of the functions from the set F at random to be 
the root of the tree. Whenever a point is labeled with a 
function (that takes k arguments), then k lines are created to 
radiate out from the point. Then, for each line so created, an 
element is selected at random from the entire combined set C 
to be the label for the endpoint of that line. If an terminal is 
chosen to be the label for any point, the process is then 
complete for that portion of the tree. If a function is chosen to 
be the label for any such point, the process continues. The 
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probability distribution over the terminals and functions in 
the combined set C and the number of arguments taken by 
each function implicitly determines an average size for the 
trees generated by this initial random generation process. In 
this paper, this distribution is always a uniform random 
probability distribution over the entire set C (with the 
exception that the root of the tree must be a function). In 
some problems, one might bias this initial random generation 
process with a nonuniform distribution or by seeding 
particular individuals into the population. 
3.3.  THE OPERATIONS THAT MODIFY THE 
STRUCTURES 
The two primary operations for modifying the structures 
undergoing adaptation are Darwinian fitness proportionate 
reproduction and crossover (recombination). 
 
3.3.1  THE FITNESS PROPORTIONATE 
REPRODUCTION OPERATION 
The operation of fitness proportionate reproduction for the 
genetic programming paradigm is the basic engine of 
Darwinian reproduction and survival of the fittest. It operates 
on only one parental S-expression and produces only one 
offspring S-expression each time it is performed. That is, it is 
an asexual operation. If f(si(t)) is the fitness of individual si in 
the population at generation t, then, each time this operation 
is performed, each individual in the population has a 
probability of  being copied into the next generation by the 
operation of fitness proportionate reproduction. 

 
Note that the parents remain in the population while this 
operation is performed and therefore can potentially 
participate repeatedly in this operation (and other operations) 
during the current generation. That is, the selection of parents 
is done with replacement (i.e. reselection) allowed. 
3.3.2   THE CROSSOVER (RECOMBINATION) 
OPERATION 
The crossover (recombination) operation for the genetic 
programming paradigm creates variation in the population by 
producing offspring that combine traits from two parents. The 
crossover operation starts with two parental S-expressions 
and produces at least one offspring S-expression. That is, it is 
a sexual operation. In this paper, two offspring will be 
produced on each occasion that the crossover operation is 
performed. In general, at least one parent is chosen from the 
population with a probability equal to their respective 
normalized fitness values. In this paper, both parents are so 
chosen. The operation begins by randomly and independently 
selecting one point in each parent using a probability 
distribution. Note that the number of points in the two parents 
typically are not equal. As will be seen, the crossover 
operation is well-defined for any two S-expressions. That is, 
for any two S-expressions and any two crossover points, the 
resulting offspring are always valid LISP S-expressions. 

Offspring consist of parts taken from each parent. The 
"crossover fragment" for a particular parent is the rooted sub-
tree whose root is the crossover point for that parent and 
where the sub-tree consists of the entire sub-tree lying below 
the crossover point (i.e. more distant from the root of the 
original tree). Viewed in terms of lists in LISP, the crossover 
fragment is the sub-list starting at the crossover point.The 
first offspring is produced by deleting the crossover fragment 
of the first parent from the first parent and then impregnating 
the crossover fragment of the second parent at the crossover 
point of the first parent. In producing this first offspring the 
first parent acts as the base parent (the female parent) and the 
second parent acts as the impregnating parent (the male 
parent). The second offspring is produced in a symmetric 
manner. 
For example, consider the two parental LISP S-expressions 
below. 

 
In terms of LISP S-expressions, the two parents are 
                  (OR (NOT  D1) (AND D0 D1)) 
and 
               (OR (OR D1 (NOT D0)) (AND  (NOT  D0)  (NOT  
D1)) 
Assume that the points of both trees above are numbered in a 
depth-first way starting at the left. Suppose that the second 
point (out of the 6 points of the first parent) is selected as the 
crossover point for the first parent and that the sixth point 
(out of the 10 points of the second parent) isselected as the 
crossover point of the second parent. The crossover points are 
therefore the NOT function in the first parent and the AND 
function in the second parent. Thus, the bold, underlined 
portion of each parent above are the crossover fragments. The 
two crossover fragments are shown below 

 
The two offspring resulting from crossover are shown below: 
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Note that the first offspring above is a perfect solution for the 
exclusive-or function, namely (OR (AND (NOT D0) (NOT 
D1)) (AND D0 D1)). Note that because entire sub-trees are 
swapped, this genetic crossover (recombination) operation 
produces valid LISP S-expressions as offspring regardless of 
which point is selected in either parent. If the root of one tree 
happens to be selected as the crossover point, the crossover 
operation will insert that entire parent into the second tree at 
the crossover point of the second parent. In addition, the sub-
tree from the second parent will, in this case, then become the 
second offspring. If the roots of two parents happen to be 
chosen as crossover points, the crossover operation simply 
degenerates to an instance of fitness proportionate 
reproduction on those two parents. Note that if an individual 
mates with itself, the two resulting offspring will generally be 
different (if the crossover points selected are different).If a 
terminal is located at the crossover point in precisely one 
parent, then the sub-tree from the second parent is inserted at 
the location of the terminal in the first parent and the terminal 
from the first parent is inserted at the location of the sub-tree 
in the second parent. In this case, the crossover operation 
often has the effect of increasing the depth of one tree and 
decreasing the depth of the second tree.If terminals are 
located at both crossover points selected, the crossover 
operation merely swaps these terminals from tree to tree. 
3.4   THE STATE OF THE SYSTEM 
The state of the hierarchical genetic algorithm system at any 
generation consists only of the current population of 
individuals in the population. There is no additional memory 
or centralized 
bookkeeping used in directing the adaptive process. 
3.5   IDENTIFYING THE RESULTS AND TERMINATING 
THE  ALGORITHM 
The solution produced by this algorithm at any given time 
can be viewed as the entire population of disjunctive 
alternatives (presumably with improved overall average 
fitness) or, more commonly, as the single best individual in 
the population at that time ("winner takes all"). The algorithm 
can be terminated when either a specified total number of 
generations have been run or when some performance 
criterion is satisfied. In many problems, this performance 
requirement for termination may be that the sum of the 
distances reaches a value of zero. If a solution can be 
recognized when it is encountered, the algorithm can be 
terminated at that time and the single best individual can be 
considered as the output of the algorithm. 
3.6  THE PARAMETERS THAT CONTROL THE  
ALGORITHM 
The algorithm is controlled by various parameters, including 
two major parameters and five minor parameters. The two 
major parameters are the population size and the number of 
generations to be run. A population size of 300 was used for 
all problems described in section 4 with the exception of the 
11-multiplexer problem. After the Boolean 6-multiplexer was 
solved using the common population size of 300, we noted 
that the search space of the next larger version of multiplexer 
problem (i.e. a search space of size approximately 10616 for 

the 11-multiplexer problem) would alone indicate using a 
larger population size for this particular problem. An 
especially large population size (i.e. 4000) was then chosen 
for this particular problem in order to force down the number 
of generations required to arrive at a solution so that it would 
be practical to create a complete genealogical audit trail for 
this problem. The number of generations was 51 (i.e. an 
initial random generation and 50 subsequent generations). 
Note if termination of the algorithm is under control of some 
performance criterion (which was not the case in this paper), 
this parameter merely provides an overall maximum number 
of generations to be run.  
 

4. SUMMARY OF HOW TO USE THE ALGORITHM: 
In this section, we summarize the six major steps necessary 
for using the "genetic programming" paradigm. These majors 
steps involve determining (1) the set of terminals, (2) the set 
of function, (3) the environmental cases, (4) the fitness 
function, (5) the parameters for the run, and (6) the 
termination criterion and method for identifying the solution. 
4.1.   IDENTIFYING THE SET OF TERMINALS 
The first major step is to identify the set of terminals for the 
problem. The set of terminals must, of course, be sufficient to 
solve the problem. The step of of correctly identifying the 
variables which have explanatory power for the problem at 
hand is common to all science. For some problems, this 
identification may be simple and straightforward. For 
example, in the broom-balancing problem, the physics of the 
problem dictate that the velocity of the cart, the angle of the 
broom, and the angular velocity of the broom are the state 
variables having explanatory power for the problem. In the 
sequence induction problem, the sequence index II is the 
single necessary variable atom (terminal). Needless to say, 
the set of variables must be sufficient to express the solution 
to the problem. For example, if one were given only the 
diameter of each planet and the color of its surface, one 
would not be able to discover Kepler’s Third Law for the 
period of the planet.Constant atoms, if required at all, can 
enter a problem in two ways. One way is to use the "constant 
creation" procedure involving the ephemeral random constant 
atom "R" described earlier. 
In this event, the type of such random initial constants is 
chosen to match the problem. For example, in a Boolean 
domain, the constants are T and NIL; in an integral domain, 
the constants are integers in a certain range; and in a real-
valued problem domain, the constants might be floating point 
values in a certain range. The second way for constant atoms 
to enter a problem is by explicitly including them. For 
example, one might include p in a particular problem where 
there is a possibility that this particular constant would be 
useful. Of course, if one failed to include p in such a problem, 
the genetic programming paradigm paradigm would probably 
succeed in approximately creating it (albeit at a certain cost in 
computational resources) in the manner described above. 
4.2.  IDENTIFYING THE FUNCTION SET 
The second major step is to identify a sufficient set of 
functions for the problem. For some problems, the 
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identification of the function set may be simple and 
straightforward. For real-valued domains,the obvious 
function set might be the set of 4 arithmetic operations, 
namely, {+, -, *, %}.In a Boolean function learning domain, 
for example, the function set {AND, OR, NOT, IF} might be 
the choice since it is computationally complete and 
convenient (in that the IF function often produces easily 
understood logical expressions). If ones interests lie in the 
domain of design of semiconductor logic layout, a function 
set consisting only of the NAND function might be most 
convenient. If the problem involves economics (where 
growth rates and averages often play a role), the function set 
might also include an exponential, logarithmic, and moving 
average function in addition to the four basic arithmetic 
operations. Similarly, the SIN and COS functions might be 
useful additions to the function set for some problems. 
Some functions may be added to the function set merely 
because they might possibly facilitate a solution (even though 
the same result could be obtained without them). For 
example, one might include a squaring function in certain 
problems (e.g. broom balancing) even though the same result 
could be attained from the simple multiplication function 
(albeit at a cost in computational resources). In any case, the 
set of functions must be chosen so that any composition of 
the available functions is valid for any value that any 
available variable atom might assume. Thus, if division is to 
be used, the division function must be modified so that 
division by zero is well-defined. The result of a division by 
zero could be defined to be zero, a very large constant, or a 
new value such as the Common LISP keyword Ò:infinityÓ. If 
one defined the result of a division by zero as the keyword 
“infinity" then, each of the other functions in the function set 
must be written so that it is well-defined if this ":infinity" 
value happens to be one of its arguments. Similarly, if square 
root is one of the available functions, it could either be a 
specially defined real-valued version that takes the square 
root of the absolute value of the argument (as was used in the 
broom balancing problem) or it could be the Common LISP 
complex-valued square root function SQRT (as was used in 
the quadratic equation problem). 
Common LISP is quite lenient as to the typing of variables; 
however, it does not accommodate all of the combinations of 
types that can arise when computer programs are randomly 
generated and recombined via crossover. For example, if 
logical functions are to be mixed with numerical functions, 
then some kind of a real-valued logic should be used in lieu 
of the normal logical functions. 
For example, the greater than function GT used in the broom 
balancing problem assumed the real value 1.0 if the 
comparison relation was satisfied and the real value 0.0 
otherwise.Note that the number of arguments must be 
specified for each function. In some cases, this specification 
is obvious or even mandatory (e.g. the Boolean NOT 
function, the square root function). However, in some cases 
(e.g. IF, multiplication), there is some latitude as to the 
number of arguments. One might, for example, include a 
particular function in the function set with differing numbers 

of arguments. The IF function with two arguments, for 
example is the IF-THEN function, whereas the IF function 
with three arguments is the IF-THEN-ELSE function. The 
multiplication function with three arguments might facilitate 
the emergence of certain cross product terms although the 
same result could be achieved with repeated multiplication 
function with two arguments. It is often useful to include the 
Common LISP PROGN (ÒprogramÓ) form with varying 
number of arguments in a function set to act as a connective 
between the unknown number of steps that may be needed to 
solve the problem. The choice of the set of available 
functions, of course, directly affects the character of the 
solutions that can be attained. The set of available function 
form a basis set for generating potential solutions. For 
example, if one does symbolic regression on the absolute 
value function on the interval [-1, +1] with a function set 
containing the If-Then-Else function and subtraction, one 
obtains a solution in the familiar form of a conditional test on 
x that returns either x or -x. On other hand, if the function set 
happens to contain COS, COS3 (i.e. cosine of 3 times the 
argument), COS5 (i.e. cosine of 5 times the argument) instead 
of the If-Then-Else function, one gets two or three terms of 
the familiar Fourier series approximation to the absolute 
value function. Similarly, we have seen cases where, when 
the exponential function (or the SIGMA summation operator) 
was not available in a problem for which the solution 
required an exponential, the first one or two polynomial terms 
of the Taylor series in the solution, in lieu of the missing ex.It 
should be noted that the necessary preliminary selection of 
appropriate functions and terminals is a common element of 
machine learning paradigms. For example, in using 
techniques in the ID3 family for inducing decision trees, the 
necessary preliminary selection of the set of available 
"attribute-testing" functions that appear at the nodes of the 
tree (and the exclusion of other possible functions) 
corresponds to the process of choosing of functions here. 
Similarly, if one were approaching the problem of the 16-
puzzle using SOAR, the necessary preliminary selection of 
the set of 24 operators for moving tiles in the puzzle 
corresponds to the process of choosing of functions here. 
Similarly, if one were approaching the problem of designing 
a neural network to control an artificial ant, as Jefferson, 
Collins et. al. successfully did (1990), the necessary 
preliminary selection of the functions (turn-left, turn-right, 
sense, move) corresponds to the process of choosing of 
functions here. 
Naturally, to the extent that the function set or terminal set 
contains irrelevant or extraneous elements, the efficiency of 
the discovery process will be reduced. 
4.3.  ESTABLISHING THE ENVIRONMENTAL CASES 
The third major step is the construction of the environment 
for the problem. In some problems, the nature of the 
environment is obvious and straight-forward. For example, in 
sequence induction,symbolic function identification 
(symbolic regression), empirical discovery, and Boolean 
function learning problems, the environment is simply the 
value(s) of the independent variable(s) associated with a 
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certain sampling (or, perhaps, the entire set) of possible 
values of the dependent variable(s). 
In some problems (e.g. block-stacking, broom-balancing), the 
environment is a set of “starting Condition” cases. In some 
problems where the environment is large (e.g. block-
stacking), a random sampling or a structured representative 
sampling can be used. For example, the environmental cases 
for the symbolic regression problem, equation involving 
problems, differential game problem, and broom balancing 
problem were randomly selected floating points numbers in a 
specified range. 
4.4.  IDENTIFYING THE FITNESS FUNCTION 
The fourth major step is construction of the fitness function. 
For many problems, the fitness function is the sum of the 
distances (taken over all the environmental cases) between 
the point in the range space returned by the S-expression for a 
given set of arguments and the correct point in the range 
space. One can use the sum of the distances or the square root 
of the sum of the squares of the distances in this computation. 
For some problems, the fitness function is not the value 
actually returned by the individual Sexpression in the 
population, but some number (e.g. elapsed time, total score, 
cases handled, etc.) which is indirectly created by the 
evaluation of the S-expression. For example, in the broom 
balancing problem, raw fitness is the average time required 
by a given S-expression to balance the broom. The goal is to 
minimize the average time to balance the broom over the 
environmental cases. In the "artificial ant" problem, the score 
is the number of stones on the trail which the artificial ant 
successfully traverses in the allowed time. Since the goal is to 
maximize this score, the raw fitness is the maximum score 
minus the score attained by a particular S-expression. In the 
block stacking problem, the real functionality of the functions 
in an individual S-expression in the population is the side 
effect of the S-expression on the state of the system. Our 
interest focuses on the number of environmental starting 
condition cases which the S-expression correctly 
handles.That is, the goal is to maximize the number of 
correctly handled cases. Since raw fitness is to be defined so 
that the raw fitness is closer to zero for better S-expressions, 
raw fitness is the number of cases incorrectly handled. As we 
saw in the second version of the block-stacking problem 
(where both efficiency and correctness were sought) and in 
the solution of differential equations (where both the solution 
curve and satisfaction of initial conditions were sought), the 
fitness function can incorporate both 
correctness and a secondary factor. 
It is important that the fitness function return a spectrum of 
different values that differentiate the performance of 
individuals in the population. As an extreme example, a 
fitness function that returns only two values (say, a 1 for a 
solution and a 0 otherwise) provides insufficient information 
for guiding guide an adaptive process. Any solution that is 
discovered with such a fitness function is, then, essentially an 
accident. An inappropriate selection of the function set in 
relation to the number of environment cases for a given 
problem can create the same situation. For example, if the 

Boolean function OR is in the function set for the exclusive-
or problem, this function alone satisfies three of the four 
environment cases. Since the initial random population of 
individuals will almost certainly numerous S-expressions 
equivalent to the OR function, we are effectively left with 
only two distinguishing levels of the fitness (i.e. 4 for a 
solution and 3 otherwise). 
4.5.   SELECTING THE PARAMETERS FOR THE RUNS 
The fifth major step is the selection of the major and minor 
parameters of the algorithm and a decision on whether to use 
any of the four secondary genetic operations .The selection of 
the population size is the most important choice. The 
population size must be chosen with the complexity of the 
problem in mind. In general, the larger the population, the 
better (Goldberg 1989). But, the improvement due to a larger 
population may not be proportional to the increased 
computational resources required. Some work has been done 
on the theory of how to optimally select the population size 
for string-based genetic algorithms (Goldberg l989); 
however, we can offer no corresponding theoretical basis for 
this tradeoff for hierarchical genetic algorithms at this time. 
Thus, selection of the population size lies in a category of 
external decisions that must be made by the user. In that 
respect, this decision is similar to the selection of the number 
of processing elements in neural nets, the selection of the 
string size for the condition parts of classifier system rules, 
and the selection of testing functions in ID3 type inductive 
systems. The problem of optimally allocating computer 
resources (particularly, population size and number of 
generations) over runs, the problem of optimally selecting 
other key parameters (such as percentage of individuals to 
participate in crossover and other genetic operations), and the 
problem of optimally parallelizing runs (e.g. cross migration 
versus independent isolated runs) are unsolved problems for 
all types of genetic algorithms. 
4.6.   TERMINATION AND SOLUTION 
IDENTIFICATION 
Finally, the sixth major step is the selection of a termination 
criterion and solution identification procedure. The approach 
to termination depends on the problem. In many cases, the 
termination criterion may be implicitly selected by merely 
selecting a fixed number of generations for running the 
algorithm. For many problems, one can recognize a solution 
to the problem when one sees it (e.g. problems where the sum 
of differences becomes zero or acceptably close to zero). 
However,for some problems (such as time-optimal control 
strategy problems where no analytic solution is known), one 
cannot necessarily recognize a solution when one sees it 
(although one can recognize that the current result is better 
than any previous result or that the current solution is in the 
neighborhood of some estimate of the solution). The solution 
identification procedure used in this paper is to identify the 
best single individual of some generation where the 
termination criterion is satisfied as the solution to the 
problem (“winner takes all”). 
There are numerous opportunities to use domain specific 
heuristic knowledge in connection with the genetic 
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programming paradigm. Many of these areas have been 
studied in connection with string-based genetic algorithms 
(Grefenstette 1987b). First, it may be useful to include 
domain specific heuristic knowledge in creating the initial 
random population. For example, one might include sub-
programs believed to be useful for solving the problem at 
hand in the initial random population. Or, one might use a 
probability distribution other than the uniform distribution to 
initially select the functions and terminals when the initial 
random individuals are randomly generated. Secondly, 
domain specific heuristic knowledge may be helpful in over-
selecting or under-selecting certain points in the computer 
programs for the crossover operation. This may even include 
protecting certain points from selection for crossover under 
certain circumstances or requiring certain points to be 
selected for crossover under certain circumstances. Thirdly, 
domain specific heuristic knowledge may be useful in 
varying the parameters of the run based on information 
gained during the run. Fourth, domain specific heuristic 
knowledge can be used in the selection of the set of available 
functions and terminals for the problem so that this set is not 
merely minimally sufficient to solve the problem, but so that 
the set of available functions and terminals actively facilitates 
solution of the problem. 
The extent to which one uses such domain specific heuristics 
is, of course, dependent on whether the primary objective is 
to solve a specific problem at hand or to study the process in 
the purest theoretical form. We have chosen not to use such 
domain specific heuristics in the work reported here. 
 

5.  ADDITIONAL OPERATIONS 
In addition to the two primary genetic operations of fitness 
proportionate reproduction and crossover, there are four 
secondary operations for modifying the structures undergoing 
adaptation. They are mutation, permutation, editing, and the 
“define building block” operation 
5.1.  THE MUTATION OPERATION 
The mutation operation provides a means for introducing 
small random mutations into the population. The mutation 
operation is an asexual operation in that it operates on only 
one parental S-expression. The individual is selected 
proportional to normalized fitness. The result of this 
operation is one offspring S-expression. The mutation 
operation selects a point of the LISP S-expression at random. 
The point can be an internal (function) or external (terminal) 
point of the tree. This operation removes whatever is 
currently at the selected point and inserts a randomly 
generated subtree at the randomly selected point of a given 
tree. This operation is controlled by a parameter which 
specifies the maximum depth for the newly created and 
inserted sub-tree. A special case of this operation involves 
inserting only a single terminal (i.e. a sub-tree of depth 0) at a 
randomly selected point of the tree. For example, in the figure 
below, the third point of the S-expression shown on the left 
below was selected as the mutation point and the sub-
expression (NOT D1) was randomly generated and inserted at 

that point to produce the S-expression shown on the right 
below. 

 
The mutation operation potentially can be beneficial in 
reintroducing diversity in a population that may be tending to 
prematurely converge. Our experience has been that no run 
using only mutation and fitness proportionate reproduction 
(i.e. no crossover) ever produced a solution to any problem 
(although such solutions are theoretically possible given 
enough time). In other words, “mutating and saving the best” 
does not work any better for hierarchical genetic algorithms 
than it does for string-based genetic algorithms. This negative 
conclusion as to the relative unimportance of the mutation 
operation is similar to the conclusions reached by most 
research work on string-based genetic algorithms (Holland 
1975, Goldberg 1989). 
5.2.  THE PERMUTATION OPERATION 
The permutation operation is both an extension of the 
inversion operation for string-based genetic algorithms to the 
domain of hierarchical genetic algorithms and a 
generalization of the inversion operation. The permutation 
operation is an asexual operation in that it operates on only 
one parental S-expression. The individual is selected in a 
manner proportional to normalized fitness. The result of this 
operation is one offspring S-expression. The permutation 
operation selects a function (internal) point of the LISP S-
expression at random. If the function at the selected point has 
k arguments, a random permutation is selected at random 
from the set of k! possible permutations. Then the arguments 
of the function at the selected point are permuted in 
accordance with the random permutation. Notice that if the 
function at the selected point happens to be commutative, 
there is no immediate effect from the permutation operation 
on the value returned by the S-expression. The inversion 
operation for strings reorders the order of characters found 
between two selected points of a single individual by 
reversing the order of the characters between the two selected 
points. The operation described here allows any one of k! 
possible permutations to occur (of which the reversal is but 
one). 
The permutation operation can potentially bring closer 
together elements of a relatively high fitness individual so 
that they are less subject to later disruption due to crossover. 
However, like the mutation operation, our experience, after 
including the permutation operation in numerous runs of 
various problems described herein, is that the benefits of this 
operation are purely potential and have yet to be observed. 
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5.3.  THE EDITING OPERATION 
The editing operation provides a means to edit (and simplify) 
S-expressions as the algorithm is running.The editing 
operation is applied after the new population is created 
through the action of the other operations. The editing 
operation is an asexual operation in that it operates on only 
one parental Sexpression. The result of this operation is one 
offspring S-expression. All of the previously described 
operations operate on individuals selected in proportion to 
fitness. The editing operation is the exception. The editing 
operation, if it is used at all, is applied to every individual S-
expression in the population. 
The editing operation recursively applies a pre-established set 
of editing rules to each S-expression in the population. First, 
in all problem domains, if any sub-expression has only 
constant atoms as arguments, the editing operation will 
evaluate that sub-expression and replace it with the value 
obtained. In addition, the editing operation applies particular 
sets of rules that apply to various problem domains, including 
rules for numeric domains, rules for Boolean domains, etc. In 
numeric problem domains, for example, the set of editing 
rules includes rules that insert zero whenever a sub-
expression is subtracted from an identical sub-expression and 
also includes a rule that inserts a zero whenever a sub-
expression is multiplied by zero. In Boolean problem 
domains, the set of editing rules includes a rule that inserts X 
in place of (AND X X), (OR X X), or (NOT (NOT X)), etc. 
The editing operation is controlled by a frequency parameter 
which specifies whether it is applied on every generation or 
merely a certain number of the generations. 
The main reason for the editing operation is convenience. It 
simplifies S-expressions and saves computer resources. It 
also appears to improve overall performance slightly. The 
editing operation apparently improves performance by 
reducing the vulnerability of an S-expression to disruption 
due to crossover at points within a potentially collapsible, 
non-parsimonious sub-expression. Crossover at such points 
typically leads to counter-productive results. For example, 
consider the sub-expression (NOT (NOT X)). This sub-
expression could be simplified to the more parsimonious sub-
expression X. In this example, a crossover in the middle of 
this sub-expression would usually produce exactly the 
opposite Boolean result as the expression as a whole. In this 
example, the editing operation would prevent that kind of 
crossover from occurring by condensing the sub-expression 
to the single term X. 
5.4.  THE ÒDEFINE BUILDING BLOCKÓ OPERATION  
The “define building block” operation is a means for 
automatically identifying potentially useful “building blocks”  
while the algorithm is running. The “define building block” 
operation is an asexual operation in that it operates on only 
one parental S-expression. The individual is selected 
proportional to normalized fitness. The operation selects a 
function (internal) point of the LISP S-expression at random. 
The result of this operation is one offspring S-expression and 
one new definition. The “define building block” operation 
works by defining a new function and by replacing the sub-

tree located at the chosen point by a call to the newly defined 
function. The newly defined function has no arguments. The 
body of the newly defined function is the sub-tree located at 
the chosen point. The newly defined functions are named 
DF0, DF1, DF2, DF3, ... as they are created. 
For the first occasion when a new function is defined on a 
given run, Ò(DF0)Ó is inserted at the point selected in the 
LISP S-expression. The newly defined function is then 
compiled. The function set of the problem is then augmented 
to include the new function. Thus, if mutation is being used, 
an arbitrary new sub-tree grown at the selected point has the 
potential to include the newly defined function. 
For example, consider the simple LISP S-expression (+ A (* 
B C)) shown, in graphical form, below: 

 
Suppose that the third point (i.e. the multiplication) is 
selected as the point for applying the "define building block" 
operation. Then, the subtree for (* B C) is replaced by a call 
to the new "defined function" DFO producing the new S-
expression (+ A (DF0)) shown, in graphical form, below:  

 
This new tree has the call (DF0) in lieu of the sub-tree (* B 
C). 
At the same time, the function DFO was created. If this new 
"defined function" were written in LISP, it would be written 
as shown below: 
                                     (  defun DF0 () 
                                          (* B C) 
                                      ) 
In implementing this operation on the computer, the sub-tree 
calling for the multiplication of B and C is first defined and 
then compiled during the execution of the overall run. The 
LISP programming language facilitates this "define building 
block" operation in two ways. First, the form of data and 
program are the same in LISP and therefore a program can be 
altered by merely performing operations on it as if it were 
data. Secondly, it is possible to compile a new function 
during the execution of an overall run and then execute it. 
The effect of this replacement is that the selected sub-tree is 
no longer subject to the potentially disruptive effects of 
crossover because it is now an indivisible single point. In 
effect, the newly defined indivisible function is a potential 
Òbuilding blockÓ for future generations and may proliferate 
in the population in later generations based on fitness. 
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Note that the original parent S-expression is unchanged by 
the operation. Moreover, since the selection of the parental S-
expression is in proportion to fitness, the original unaltered 
parental S-ex-pression may participate in additional genetic 
operations during the current generation, including 
replication (fitness proportionate reproduction), crossover 
(recombination), or even another “define building block” 
operation. 
 

6.  ROBUSTNESS: 
The existence and nurturing of a population of disjunctive 
alternative solutions to a problem allows the genetic 
programming paradigm to perform effectively even when the 
environment changes. To demonstrate this, the environment 
for generations 0 through 9 is the quadratic polynomial x2 +x 
+2; however, at generation 10, the environment abruptly 
changes to the cubic polynomial x3 + x2 +2x +1; and, at 
generation 20, it changes again to a new quadratic polynomial 
x2 +2x + 1. A perfect- scoring quadratic polynomial for the 
first environment was created by generation 3. Normalized 
average population fitness stabilized in the neighborhood 0.5 
for generations 3 through 9 (with genetic diversity 
maintained). Predictably, the fitness level abruptly dropped to 
virtually 0 for generation 10 and 11 when the environment 
changed. Nonetheless, fitness increased for generation 12 and 
stabilized in the neighborhood of 0.7 for generations 13 to 19 
(after creation of a perfect-scoring cubic polynomial). The 
fitness level again abruptly dropped to virtually 0 for 
generation 20 when the environment again changed. 
However, by generation 22, a fitness level again stabilized in 
the neighborhood of 0.7 after creation of a new perfect-
scoring quadratic polynomial. 
 

CONCLUSION: 
We have demonstrated how a number of seemingly different 
problems from artificial intelligence, symbolic processing, 
and machine learning can be reformulated as problems that 
require discovery of a computer program that produces a 
desired output for particular inputs. These problems include 
function learning, robotic planning, sequence induction, 
symbolic function identification, symbolic regression, 
symbolic "data to function" integration, symbolic "data to 
function" differentiation, solving differential equations, 
solving integral equations, finding inverse functions, solving 
general equations for numerical values, empirical discovery, 
concept formation, automatic programming, pattern 
recognition, optimal control, game-playing, multiple 
regression, and simultaneous architectural design and training 
of a neural network. We have then shown how such problems 

can be solved by genetically breeding computer programs 
using the genetic programming paradigm. 
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